High‐resolution forest canopy height estimation in an African blue carbon ecosystem

نویسندگان

  • David Lagomasino
  • Temilola Fatoyinbo
  • Seung‐Kuk Lee
  • Marc Simard
چکیده

Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereo-photogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy h...

متن کامل

Estimation of Forest Biomass from an Airborne Single-pass L-band Pol-insar System

In this paper we describe forest height and biomass results obtained with an experimental airborne L-Band fully polarimetric, singlepass InSAR system over a test area in western Canada. The significance of the single-pass characteristic is that temporal decorrelation is avoided, allowing more robust Pol-InSAR forest parameter recovery. The derived tree height results were validated against thos...

متن کامل

Biomass Equations for 24 Understory Species in Coniferous and Broadleaved Mixed Forests in Northeastern China

Understory plants are important components of forest ecosystem productivity and diversity. Compared to biomass models of overstory canopy trees, few are available for understory saplings and shrubs and therefore their roles in estimation of forest carbon pools are often ignored. In this study, we harvested 24 understory species including 4 saplings, 9 tree-like shrubs and 11 typical shrubs in c...

متن کامل

The effect of ecophysiography on the quantitative characteristics of DBH, height, basal area, crown diameter and canopy area of trees in mountain forest communities (Case study: Oak-hornbeam community in Arasbaran forest)

Ecophysiography is the geography of the earth and the relationship between physiography and the ecosystem. Ecophysiography is a basis for planning processes to study the characteristics of terrestrial systems concerning the interactions between terrestrial physiography and living organisms. Due to the current state of ecosystems and the increase in natural disasters for ecosystem sustainability...

متن کامل

Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland

Mapping the regional distribution of forest canopy height and aboveground biomass is worthwhile and necessary for estimating the carbon stocks on Earth and assessing the terrestrial carbon flux. In this study, we produced maps of forest canopy height and the aboveground biomass at a 30 m spatial resolution in Maryland by combining Geoscience Laser Altimeter System (GLAS) data and Landsat spectr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015